Volver a la biblioteca de pruebas

Google Cloud AutoML Prueba

La prueba de Google Cloud AutoML mide la experiencia en entrenamiento de modelos, preparación de datos, integración con BigQuery, evaluación, despliegue y herramientas avanzadas de AutoML, confirmando la competencia de los candidatos en la aplicación de las soluciones de IA de Google.

🇬🇧 English

6 habilidades evaluadas

Entrenamiento y Ajuste de Modelos con Google Cloud AutoMLPreparación y etiquetado de datos para AutoMLIntegración de Google Cloud AutoML y BigQueryEvaluación de modelos y optimización del rendimientoImplementación y servicio de AutoMLAutoML Visión, PLN y Traducción
Tipo de pruebaSoftware Expertise
Duración10 Mins
NivelIntermedio
Preguntas12

Acerca de la prueba Google Cloud AutoML

La evaluación de Google Cloud AutoML mide la capacidad de los candidatos para utilizar la plataforma AutoML de Google con el fin de crear, entrenar y desplegar modelos de machine learning de manera eficiente. Con las decisiones basadas en datos volviéndose esenciales en todos los sectores, esta prueba identifica a los profesionales capaces de utilizar Google Cloud AutoML para fomentar la innovación y la excelencia operativa.

Key areas include Google Cloud AutoML Model Training, where candidates must showcase skills in choosing appropriate datasets, setting training parameters, and assessing models to meet business goals. The exam covers best practices like data preprocessing, managing imbalanced datasets, and model fine-tuning.

Data Preparation and Labeling evaluates the candidate's competence in producing clean, accurately labeled data crucial for model accuracy. Familiarity with tools such as the Data Labeling Service is tested, emphasizing the importance of precise data in critical fields like healthcare, finance, and retail.

Integration of Google Cloud AutoML with BigQuery is assessed by testing the ability to import datasets, formulate queries, and manage large volumes of data effectively—key for industries handling big data to enable real-time insights.

Model Evaluation and Performance Tuning skills are probed to ensure candidates can analyze models with metrics like accuracy, precision, and recall, using techniques such as hyperparameter tuning, cross-validation, and benchmarking to optimize results.

AutoML Deployment and Serving skills evaluate how well candidates can deploy models to production, including endpoint configuration, version control, and ensuring scalable inference, vital for sectors like logistics and e-commerce.

Finally, the test covers advanced tools such as AutoML Vision, Natural Language, and Translation, assessing expertise in image recognition, sentiment analysis, and language translation, which drive engagement in industries like media and customer support.

In sum, the Google Cloud AutoML test is a comprehensive tool to identify experts capable of leveraging machine learning technology to address diverse business challenges.

Relevante para:

  • Data Engineer
  • Data Scientist
  • DevOps Engineer
  • Machine Learning Engineer
  • Business Intelligence Analyst
  • Cloud Solutions Architect

Habilidades evaluadas

Expandir todo